Imaging the unimaginable with (imaging) mass cytometry

Frits Koning LUMC, Leiden Celiac Disease Consortium

Flow cytometry

39 markers simultaneously!!!!

• 39 dimensions

• New approaches to data analysis

• Dimensionality reduction techniques

• t-SNE: stochastic neighborhood embedding

t-SNE analysis of CD4⁺ T cells

Total

450,000 cells pooled from 102 samples

Identification of distinct subsets within the CD4⁺ T cell compartment

Total For the second se

450,000 cells pooled from 102 samples

ACCENSE

Sunday, December 2, 2018

Van Unen et al, Immunity 2016

> 120 immune subsets

Cell % (of CD45⁺ cells)

30

n

Clustering samples on the basis of immune compositions

Clustering samples on the basis of immune compositions

Clustering samples on the basis of immune compositions,

"A slightly optimistic view of the data"

dual-t-SNE approach

Human fetal intestine

36 antibody panel Spade/t-SNE/ACCENSE Unbiased hierarchical clustering

Li, van Unen et al. J. Exp. Med. 2018 Li, van Unen et al. Nat. Immunol, in press

Li et al. J. Exp. Med. 2018

Monitoring t-SNE calculation indicates potential differentiation paths of innate lymphocytes

Int-ILC: a precursor that can give rise to NK cells and ILC3

Hollt et al, COMPUTER GRAPHICS FORUM 2016 Li, van Unen et al. J. Exp. Med. 2018

Aim of the study

To unravel local and systemic immune profiles in colorectal cancer using high-dimensional system-wide analyses by mass cytometry

Characterization of immune cells using a mass cytometry antibody panel of 39 markers

Major lineage markers		
Pan immune		
T cells		
CD4 T cells		
CD8 T cells		
γδ T cells		
B cells		
Monocytes		
Myeloid cells		

Fc/co	mplement receptors
CD16	Low affinity FC γ R3 α
CD11b	Complement R3

	Apoptosis
CD95	FASR/TNFRSF6

Differentiation/activation markers		
CD45RO	CD45 isoform	
CD38	cADP ribose hydrolase	
CD161	KLRB1	
HLA-DR	Ag presentation	
CD335	NKp46	

Cytokine/chemokine receptors		
CD123	IL-3Ra	
CD127	IL-7Ra	
CD25	IL-2Ra	
CD122	IL-2Rβ	
CCR6	Chemokine R6	
CCR7	Chemokine R7	
CXCR3	CXC chemokine R3	
CD115	CSF1R	

Immuno	modulatory molecules
PD-1	Co-inhibitory R
PD-L1	Co-inhibitory ligand
D27	Co-stimulatory R
D28	Co-stimulatory R
CD40	Co-stimulatory R
COS	Co-stimulatory R
D86	Co-stimulatory ligand
Adhes	ion/homing markers
D44	Glycoprotein
D54	ICAM-1
D56	NCAM
D69	Glycoprotein
CD103	Glycoprotein
CD163	High-affinity scavenger R
(LRG-1	Glycoprotein

High-dimensional immunophenotyping reveals tumor-resident immune subsets across multiple lineages

Int-ILC pop up in CRC!!! CD3-CD7+CD127-CD45RO+

Imaging Mass Cytometry

Immunohistochemistry with 39 markers simultaneously

IHC with 20 markers simultaneously

HSNE analysis

It is all about discovery!

To boldly go where no one has gone before

Research positions open

Currently

- Inflammatory bowel disease
- Celiac disease and refractory celiac disease
- Colorectal cancer/Pancreatic cancer
- Transplant rejection
- Pulmonary disease
- Psoriassis and atopic dermatitis
- Parasitology
- Lymphocyte development in the fetal intestine
- PPS-Immunology grant, IMI-BIOMAP grant, CCFA grant, Chinese PhD students, two ZonMW TAS grants
- Research positions open!

Acknowledgements

- Vincent van Unen
- Li Na
- Natasja de Vries
- Noel de Miranda
- Thomas Hollt
- Nicola Pezzotti
- Anna Vilanova
- Boudewijn Lelieveldt
- Luisa Mearin
- Chris Mulder
- Andrea van der Meulen

