ANALYSE VAN DARMBIOPTEN IN KADER VAN REFRACTAIRE COELIAKIE

NVC - SKML, 21-11-2018

N. BOECKX, MD., PHD.

LABORATORIUMGENEESKUNDE, UZ LEUVEN

CELIAC DISEASE: WHAT?

- Auto-immune disorder that chronically affects the small intestine
- Induced by dietary gluten in genetically predisposed individuals (alleles encoding HLA-DQ2 or DQ8)
- Worldwide **prevalence** ~**I**%

CELIAC DISEASE: CLINICAL FEATURES

GASTRO-INTESTINAL signs and symptoms

- chronic diarrhea and abdominal pain
- steatorrhea
- weight loss, failure to thrive, growth failure, anorexia
- bloating
- vomiting, ...

Healthy villi A. In a healthy person, nutrients get absorbed by villi in the small intestine A. In a healthy person, nutrients get absorbed by villi in the small intestine and go into the bloodsteam. B. In a person with Celiac Disease, the villi have been damaged by inflammation, so fewer nutrients pass into the bloodstream.

EXTRA-INTESTINAL signs and symptoms

- iron-deficiency anemia and other nutritional deficiencies (vitamin B12, vitamin D, folate, zinc, vitamin B6)
- fatigue, ...

ASSOCIATED (AUTOIMMUNE) CONDITIONS

- type I diabetes
- autoimmune thyroid / liver disease
- autominiume trigitord / liver diseas

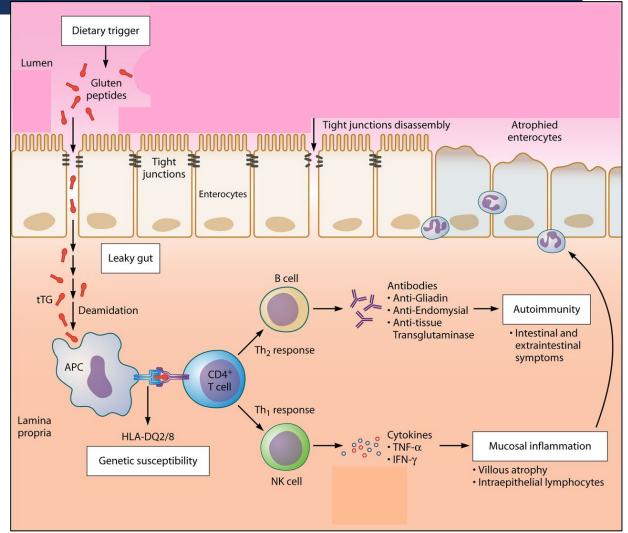
Sjögren syndrome,

all associated with HLA risk alleles (HLA haplotypes DQ2 and/or DQ8)

.

CELIAC DISEASE: DIAGNOSIS

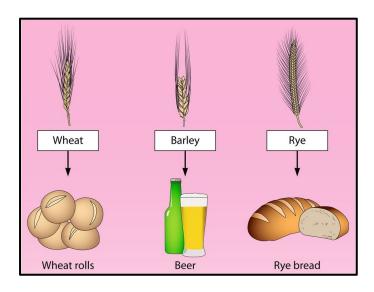
I. Serologic markers of celiac disease


- IgA/IgG against tissue transglutaminase (tTG)
- IgA Endomysial antibody (EMA)
- IgA/IgG against deamidated gliadin peptide (DGD)

2. Intestinal biopsies

- Mucosal injury, more pronounced in proximal intestine, mild or absent distally
- Microscopic findings: atrophic villi, crypt hyperplasia, increase in number of intra-epithelial lymphocytes (IEL) (not specific for CD)

3. Genetics


Class II HLA DQ2 / DQ8 (in almost all CD patients, but also in 30-40% of Western Caucasian population; only 3% of individuals with these haplotypes develop CD)

CELIAC DISEASE: TREATMENT

- the only treatment for celiac disease is a strict gluten-free diet
 - reduces symptoms, mortality and risk for malignancy
 - lifelong diet (expensive, socially isolating)
 - avoiding
 - wheat ('tarwe')
 - rye ('rogge')
 - barley ('gerst')


OBVIOUS SOURCES OF GLUTEN:

bread, bagels, cakes, cereal, cookies, pasta, noodles, pastries, pies, rolls

GLUTEN-FREE DIET

Showbizz > TV

Kobe Ilsen ontmoet koningin Mathilde in 'Over Eten': "De koning eet geen gluten"

DBJ 21 november 2018 06u57 Bron: NB

5 REACTIES

REFRACTORY CELIAC DISEASE (RCD)

- persisting or recurring symptoms despite strict adherence to gluten-free diet
 - diarrhea, abdominal pain, involuntary weight loss, ...
 - severe malnutrition, protein-losing enteropathy, ulcerative jejunitis,
- patients are nearly always adults (50 years or thereafter)
- affects less than 1% of CD patients, but significant morbidity and mortality
- subdivided into 2 types of RCD
 - RCD type I
 - RCD type II

RCD type I (68-80% of RCD)	RCD type II
low risk (3-14%) for enteropathy-associated T-cell lymphoma (EATL)	increased risk (30-52%) to develop EATL

RCD type I (68-80% of RCD)	RCD type II
low risk (3-14%) for enteropathy-associated T-cell lymphoma (EATL)	increased risk (30-52%) to develop EATL
high 5-year survival (80-96%)	poor 5-year survival (44-58%)

RCD type I (68-80% of RCD)	RCD type II
low risk (3-14%) for enteropathy-associated T-cell lymphoma (EATL)	increased risk (30-52%) to develop EATL
high 5-year survival (80-96%)	poor 5-year survival (44-58%)
BENIGN => often responds to treatment with eg. topical steroids, immunosuppressive regimens	PRE-MALIGNANT (indolent lymphoma (pre-EATL)) => requires cytotoxic chemotherapeutic therapy, eg. 2-CDA, auto-SCTX (2 CDA-failure))

RCD type I (68-80% of RCD)	RCD type II
low risk (3-14%) for enteropathy-associated T-cell lymphoma (EATL)	increased risk (30-52%) to develop EATL
high 5-year survival (80-96%)	poor 5-year survival (44-58%)
BENIGN => often responds to treatment with eg. topical steroids, immunosuppressive regimens	PRE-MALIGNANT (indolent lymphoma (pre-EATL)) => requires cytotoxic chemotherapeutic therapy, eg. 2-CDA, auto-SCTX (2 CDA-failure))

RCD type I (68-80% of RCD)	RCD type II
low risk (3-14%) for enteropathy-associated T-cell lymphoma (EATL)	increased risk (30-52%) to develop EATL
high 5-year survival (80-96%)	poor 5-year survival (44-58%)
BENIGN => often responds to treatment with eg. topical steroids, immunosuppressive regimens	PRE-MALIGNANT (indolent lymphoma (pre-EATL)) => requires cytotoxic chemotherapeutic therapy, eg. 2-CDA, auto-SCTX (2 CDA-failure))
mainly intra-epithelial lymphocytes (IELs) with normal phenotype, only low numbers of aberrant IELs	high(er) numbers of aberrant IEL, which can clonally expand

PHENOTYPE OF IELs

Normal IELs

- Majority (>70%) of IELs are sCD3+ T-cells
 - TCRab (80%)
 - >85% CD8+
 - only ~10% CD4+
 - TCRgd (5-15%) with variable expression of CD8 (40-80%)
- 10-20% of IELs are CD3- cells

PHENOTYPE OF IELs

Normal IELs

- Majority (>70%) of IELs are sCD3+ T-cells
 - TCRab (80%)
 - >85% CD8+
 - only ~10% CD4+
 - TCRgd (5-15%) with variable expression of CD8 (40-80%)
- 10-20% of IELs are CD3- cells

Aberrant IELs

- T-cells
 - surface CD3-
 - surface CD8-
 - cytoplasmatic CD3+

14

METHODS TO IDENTIFY ABERRANT IELS

I. Immunohistochemistry: CD3 and CD8 staining

2. TCR gene rearrangement studies

3. Flowcytometric immunophenotyping

METHODS TO IDENTIFY ABERRANT IELS

nmunohistochemistry	IHC and TCR clor

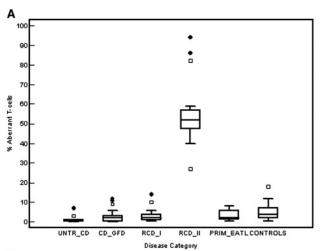
CD3 and CD8 staining

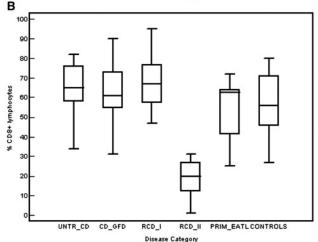
studies

TCR gene rearrangement

- reliable tools to identify dominant aberrant IEL populations
- BUT fails to identify a moderate increase of these cells

no differentiation between cyCD3 and sCD3 lower sensitivity: high cut-off (>50% CD3+CD8- of CD3+ IELs) high interobserver variability


fails to identify clonal IELs in patients with 20-25% aberrant IELs clonal GR: not specific for RCDII (also seen in RCDI (17%) and GFD (6%)


METHODS TO IDENTIFY ABERRANT IELS

Immunohistochemistry CD3 and CD8 staining	widely available	 no differentiation between cyCD3 and sCD3 lower sensitivity: high cut-off (>50% CD3+CD8- of CD3+ IELs) high interobserver variability
TCR gene rearrangement studies		 fails to identify clonal IELs in patients with 20- 25% aberrant IELs clonal GR: not specific for RCDII
Flowcytometric immunophenotyping GOLDEN STANDARD	 can differentiate between cyCD3 and sCD3 can also identify patients with only a moderate increase in aberrant IELs (sCD3-CD8-CD7+cyCD3+) 	in 95% of non-refractory CD and control patients, the highest % aberrant T-cells in duodenal biopsy specimens is 20%

FCM LYMPHOCYTE SUBSETS IN DUODENAL BIOPSY SPECIMENS

 \Rightarrow Percentage aberrant T-cells (CD7+ surface CD3- cytoplasmic CD3+) in duodenal biopsy specimens of each disease category. There were **significantly more aberrant T-cells in the RCD II group** as compared to all other groups, in all cases p < 0.0001.

 \Rightarrow Percentage CD8+ lymphocytes in duodenal biopsy specimens of each disease category. There were **significantly less CD8+ T-cells in RCD** II as compared to all other groups, in all cases p < 0.0001.

T-CELL CLONALITY ANALYSIS VERSUS FCM ANALYSIS

	RCD evolving to EATL, N = 10	RCD without EATL, N = 13
Detection of aberrant IELs		
>20% aberrant IELs	10	7
<20% aberrant IELs	0	6
T-cell clonality analysis		
Monoclonal	7 *	7
Polyclonal	2	6

	FCM	Molecular
Sensitivity	100%	78%
Specificity	46%	46%
NPV	100%	75%
PPV	59%	50%

^{*} Poor quality DNA, clonality analysis inconclusive

FCM ANALYSIS UZL: PRE-ANALYTICAL CONDITIONS

No external samples, only in-house taken biopsies

Only after appointment with laboratory

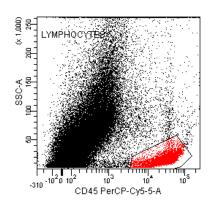
- Recipient brought to endoscopy room by lab technician
- Biopsies are immediately brought to lab after gastro-duodenoscopy is finished

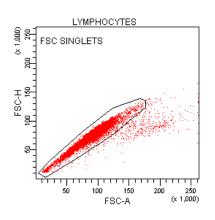
⇒ Time between endoscopy and arrival to lab: < I hour

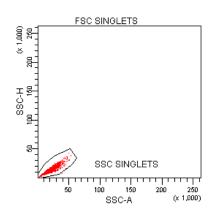
FCM ANALYSIS UZL: ISOLATION OF IELS

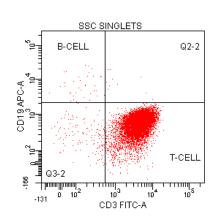
- 4 8 biopsies (stored in PBS at 0-4°C)
- isolation of IELs from intestinal biopsies
 - no chemical or enzymatic treatment
 - $_{\perp}$ done by vigorous shaking: 60 min at 37°C (can also be done at room temperature)
 - calcium chelants (DTT, EDTA): induces the disassembly of inter-epithelial junctions and the release of epithelial cells and IELs
 - ~100.000 IELs per cubic millimeter small bowel biopsies (I x I x I mm): enough for staining of IELs required for diagnosis and monitoring of CD (IELs will constitute ~5% (I-10% range) of the released cells)
 - IELs in supernatant

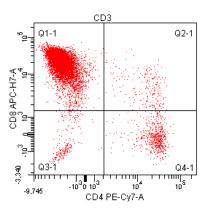
FCM ANALYSIS UZL: STAINING OF CELLS

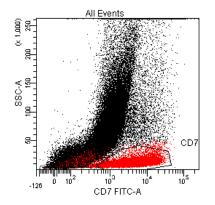

Remove the biopsies from the solution, do not remove supernatant

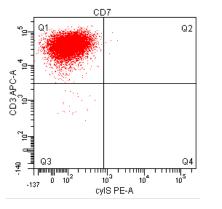

Supernatant: 2x wash step

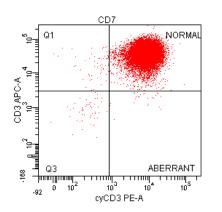

- Surface staining
 - CD3 CD16/56 CD45 CD19 CD4 CD8
- Intracellular staining
 - CD7 cy isotype CD45 sCD3
 - CD7 cy CD3 CD45 sCD3

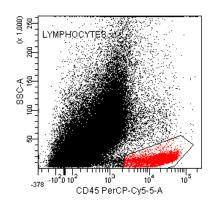


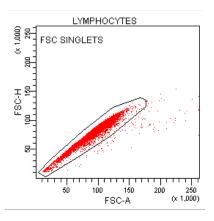

FCM ANALYSIS UZL: GATING STRATEGY

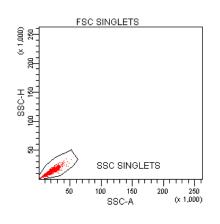


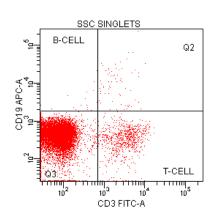


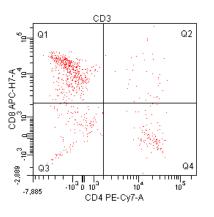


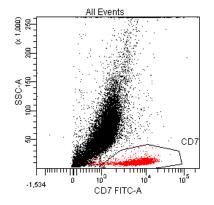


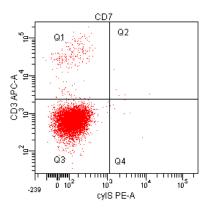


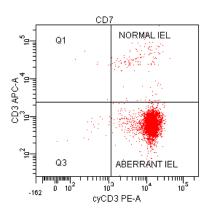

RCD type I



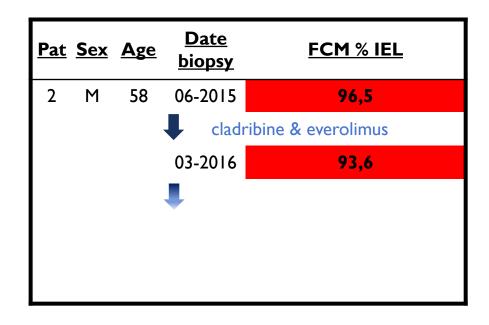

FCM ANALYSIS UZL: GATING STRATEGY

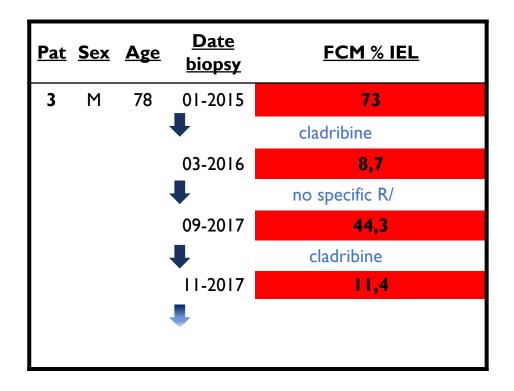






RCD type II


FCM ANALYSIS UZL: DIAGNOSIS OF RCD TYPE


<u>Pat</u>	<u>Sex</u>	<u>Age</u>	<u>CD8 (APO)</u>	Conclusion by pathologist	TCR clonality	FCM % IEL	RCD type
I	М	57	positive	CD	not done	0,6	I
2	М	58	negative	dysplasia of T-cells	monoclonal	96,5	II
3	M	78	negative	evolution to T-cell lymphoma?	monoclonal	73	II
4	М	63	positive	CD	not done	0,1	I
5	F	36	positive	CD	not done	0,3	I
6	F	63	positive	CD	not done	<0,1	I
7	F	52	positive	CD	not done	0,2	I
8	F	26	positive	CD	not done	0,2	I
9	F	26	not done	not done (referred from other hospital)	not done	0,9	I
10	F	80	not done	not done (referred from other hospital)	not done	4,1	l

FCM ANALYSIS UZL: DIAGNOSIS OF RCD TYPE

<u>Pat</u>	<u>Sex</u>	<u>Age</u>	<u>CD8 (APO)</u>	Conclusion by pathologist	TCR clonality	FCM % IEL	RCD type
ı	М	57	positive	CD	not done	0,6	I
2	М	58	negative	dysplasia of T-cells	monoclonal	96,5	Ш
3	M	78	negative	evolution to T-cell lymphoma?	monoclonal	73	Ш
4	М	63	positive	CD	not done	0,1	I
5	F	36	positive	CD	not done	0,3	Ι
6	F	63	positive	CD	not done	<0,1	Ι
7	F	52	positive	CD	not done	0,2	Ι
8	F	26	positive	CD	not done	0,2	Ι
9	F	26	not done	not done (referred from other hospital)	not done	0,9	I
10	F	80	not done	not done (referred from other hospital)	not done	4,1	l

FCM ANALYSIS UZL: MONITORING OF RCD TYPE II

Cladribine therapy

- induces only a limited reduction of the % of aberrant IEL in 40% of cases
- majority still harbours a substantial aberrant population of IEL after treatment
- does not prevent EATL development in all treated patients

TAKE HOME MESSAGES

- RCD type II patients are at risk for development of EATL
- FCM is well suited for the identification of RCD type II patients
- A cut-off value off 20% aberrant IELs appears reliable for early risk stratification and targeted therapeutic options
 in RCD patients
- Quantification of aberrant IELs is useful for subsequent follow-up of treated RCD II patients

ACKNOWLEDGEMENTS

Dept. of Laboratory Medicine

S. Govers

N. Van den Panhuyzen

B.Timmermans

Dept. of Gastroenterology

M. Hiele

T. Vanuytsel

Dept. of Hematology

P. Vandenberghe

G. Verhoef

Dept. of Gastroenterology

K. Nys

J. Cremer

S. Vermeire